Several factors contribute to on-going challenges of spatial planning and urban policy in megacities, including rapid population shifts, less organized urban areas, and a lack of data with which to monitor urban growth and land use change. To support Mumbai's sustainable development, this research was conducted to examine past urban land use changes on the basis of remote sensing data collected between 1973 and 2010. An integrated Markov Chains–Cellular Automata (MC–CA) urban growth model was implemented to predict the city's expansion for the years 2020–2030. To consider the factors affecting urban growth, the MC–CA model was also connected to multi-criteria evaluation to generate transition probability maps. The results of the multi-temporal change detection show that the highest urban growth rates, 142% occurred between 1973 and 1990. In contrast, the growth rates decreased to 40% between 1990 and 2001 and decreased to 38% between 2001 and 2010. The areas most affected by this degradation were open land and croplands. The MC–CA model predicts that this trend will continue in the future. Compared to the reference year, 2010, increases in built-up areas of 26% by 2020 and 12% by 2030 are forecast. Strong evidence is provided for complex future urban growth, characterized by a mixture of growth patterns. The most pronounced of these is urban expansion toward the north along the main traffic infrastructure, linking the two currently non-affiliated main settlement ribbons. Additionally, urban infill developments are expected to emerge in the eastern areas, and these developments are expected to increase urban pressure.
"Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model."Applied Geography 40 (2013): 140-149.↧